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PROPAGATION OF KELVIN WAVES FROM A CHANNEL INTO A SEMIBOUNDED TANK* 

V.I. PLIS 

The problem of propagation of Kelvin waves from a channel into a semibounded tank is 
considered. An exact solution of the problem is constructed using the Wiener-Hopf 
method. The solution is analyzed asymptotically and numerically. The Wiener-Hopf 
method was used in /1,2/ to solve the problem of diffraction of the Kelvin waves in 
tanks bounded by the infinite and semiinfinite parallel walls. Below a generalized 
method of matching /3/ is used to solve the problem of diffraction of Kelvin waves 
in the case when the walls confining the fluid meet at the right angles. 

1. Formulation of the problem. Consider a system consisting of a channel and a 
tank of finite depth h, rotating anticlockwise with angular velocity o. The channel and 
tank walls are described by the equations s<O,IYI = a and z = O,Iyl>a respectively (Fig-l). 
We consider the harmonic wave motions of the fluid surface, the elevations of which can be 

written in the form 5(x, Y).exp(--ict) where (J is the frequencyof 
these oscillations. Let us consider the case CT> 20. In the 
linear theory of long surface waves /4/ the function E(z, Y) re- 
presents the solution of the wave equation 

02 - 40” (A -+&)~(I, y)=O, xa=- 
gh ’ 

A=-&+-& 

4 

Fig.1 

to (5, Y) = exp [i x5 - lqx (y + a)], 1 = Zoics, q = (1 - 22)-'/* 

We shall study the fluid surface elevations in the system, gen- 
erated by this wave during its diffraction at the open end of 
the channel. We shall call the channel region 1, and divide the 
tank into the regions 2,3 and 4 as shown in Fig-l. We write 
the total amplitude of the elevations in the channel (5 < 8, 
Iyl<a) in the form E,+ & where co denotes the incident,and 
E, the diffracted waves. We denote the unknown elevation am- 

plitude in the extension of the channel, i.e. in region 2 (x>O, 
IYI<a)by Es, and in the regions 3(r>U, Y>c) and 4 (z>O,Y<--a) by &, and ga respect- 
ively. We have the following boundary value problem for the unknown functions Ej (j = 1, 2, 3, 4): 

where g is acceleration due to gravity and A the two-dimensional 
Laplace operator. Let a Kelvin wave of unit amplitude propagate 
through the channel 

(A + x”) Ej (2, Y) = 0 (1.2) 

u1 (5, a) = v1 (z,- a) = 0, 5 < 0 (1.3) 

u3 (0, Y) = 0, Y > a; u4 (0, Y) = 0, Y < -a 
Es (x, a + 0) = E, (z, a - 01, 5 > 0 (1.4) 
E4 (.r- a - 8) = Ez (I,-- a +- O), r > 8 

50 (0, Y) + 51 (8, Y) = 52 (8, Y), I Y I <a 
us (r, a + 0) = u2 (2, a - O), 5 > 0 
u,(x,-a-O)=u,(x,-u+O), r>o 
%I (0, Y) + 4 (0, Y) = 4 (0, Y), IYI <a 

Here uj and Vj (j = 0, 1, 2,3,4) are the components of the velocity of motion of the fluid paral- 
lel to the x- and y-axes, and connected with Ej (x,Y) by the relations 

Uj(% y) =+ (- i& + 1 +) Ej(G Y) 1 (1.5) 

*Prik1_Matem.Mekhan.,45,N0.6,1041-1048,1981 
785 



786 V.I. Plis 

The conditions (1.3) represent the boundary conditions at the walls of the system, (1.4) are 

the conditions of continuity of the elevations and the velocity components 5. Finally, the 
diffracted waves must satisfy the condition at the edge /5/ 

(1.6) 

andthe condition of radiation, and the solution at infinity must contain the divergent waves 

only. It can be shown that the problem (1.2)- (1.6) has a unique solutions in the class of 

bounded functions. 

2. System of functional equations. To solve the problem (1.2)-(1.6) we assume 
that the wave number x has a small positive imaginary part which will be made to tend to zero 

in the final results. The introduction of the imaginary part to x corresponds to the assump- 

tion of energy dissipation in the fluid. We shall seek the diffracted field of elevations in 

the channel E1 in the form of superposition of the following waves /2/: the Kelvin wave re- 
fleeted from the open channel end, a finite number of progressive waves propagating through 

the channel in the negative direction of the r-axis, and an infinite number of waves decay- 

ing exponentiallyinthedirection along the channel awayfrom its open end 

Sl(s, Y)= &=P I- Wi- ~~(~--a)1 + E, lHksin(yky - vk) + T,c~s(y~y--~)lexp(--ia~s) (2.1) 

The unknown amplitudes RR are zero at k = x,4,6,..., and the amplitudes Z'k are zero at k = 1,3, 
5 ) . . . . The number of progressive waves in the expression (2.1) coincides with the valueofthe 

integral part of 2xaln. 
Let us introduce the auxilliary functions Uj (y, a) (j = 2,3,4) of the complex variable a 

according to the formulas 
+- 

Uj(y,CL)= S Uj(Z, y)exp(iCtX)dX 
0 

(2.2) 

The properties of the Fourier transform in a complex plane imply that Uj(y,a) are regular 

functions of the complex variable a in the half-plane Ima> 0. To obtain the equations sat- 

isfied by these functions, we multiply both parts of the wave equation (1.1) written for 

u,(s,y) by exp(ias) and integrate it with respect to I from 0 to + CO, with the condition of 

radiation taken into account. This yields 

(2.3) 

where the root branch is chosen so that Imy>o. We shall seek the functions U,(y,a) in the 

form of a sum 

uj (Y, a) = uJ8 (Y, a) + uJa (Y? a) (2.4) 

Here and henceforth we shall denote by s and a the functions even and odd with respect to y. 

We shall give the method of solving (2.3) for the even component and only quote the final re- 

sult for the odd component. 
Let us turn our attention to region 3. Taking into account the second boundary condition 

(1.31, we shall write the equation for the function U,,(y,a) in the form 

(-& + $) u,, (y. a) = + (01 Y) 

To eliminate the unknown function appearing in the right-hand side of this equation,we replace 

a by-u in (2.5) and subtract the result from (2.5). This yields an equation, the solution 

of which satisfies the condition of radiation and has the form 

US8 (y, a) - u,, (Y,- c) = F (a) exp (ivy) (2.6) 

where F(a) is an unknown function of the complex variable a. Differentiating (2.6) with 

respect to y and eliminating F (a), we obtain a relation connecting the functions with their 

derivatives 
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JJ3, (s a) - U3, (Y, -a) = + [ 
2 (~,a)- *(y, -a)] 

We use the first formula of (1.5) to find the s-component of the velocity in the channel 
u,(z, y) , and differentiate it with respect to Y. Next we put x = 0 in the expressions for 

a&, Y) and 8% (r, Y)ldY. and write each of these expressions in the form of a sum of two terms, 
even with respect to y and odd. Substitution of the even terms into the right-hand side of 
(2.3) for lJ,,(Y,a) yields an equation, whose solution, even with respect to Y, has the form 

U,, (y, a) = -GA&- ch kuy + & chkuy- 
05 

Ak 
i- 

c =-I c+--a 
cm YkY + B (a) cos YY 

(2.7) 

Ki=-+xp(-Zqxa), K,=A,Ki, k,,=lqx 

ul,sin(Pk+lykccsmk)&? k=1,3,5,... 

Ak=( IIakcospk-_ly,sin(Pk)Tk, k=2 4 6 1 1 . . . . 

and contains an unknown function B(a). Let us differentiate (2.7) with respect to y, and 
eliminate B (a). We replace a by--in the resulting expression, and subtract the result from 
the original expression. Setting y = a, taking into account the fourth condition of (1.4) and 
the relation (2.6), we arrive at the following functional equation: 

Uzs(a, a)-U2.,@, --a)= PJo(a) + Q&(a) + 
m m 

i kz; Ak COs ?kaYk (a) - kz, Akvk sin ykaXk ta) 

P*=G [I + exp (-- 2W41(1- A,) 

(2.8) 

Qs = q [ I- exp (- 2lqxa)] (1 - A,) 

XI,= a y (a’ - ctr”) 1lf exp (2Wl 

Yk (a) = & [ 1 - exp (2iya)], ao = qx 
k 

Repeating the above process for the odd term of the solution yields the second functionalequa- 
tion 

U,,(a, a)-Usa(e, -a)=PaFo(u) + Q,&(a) + 

i kgI & ain ykuPk (a) + kg, &I’, co.3 WGk (a) 

P, = -& [ I- exp (- 211pm)] (1 + A,) 

Fk ca) = + [i + exp (WWI 
k 

&=-q_ 
[I + exp (- WWI (If -4) 

Gk (a) = y tax? agj 11 - ev (2Wl 

ak cos ‘pk f lyk SitI cpk) R,, 

Rk’{ !:a sincp,-Llykcosqk)Tk, 

k = i, 3, 5, . . , 

k k=2 46 , 1 ,... 

(2.9) 

3. Reduction of the problem to a system of linear algebraic equations. 
Numerical and asymptotic analysis. The functional equations (2.8) and (2.9) can be 
reduced to an infinite system of linear equations. We shall show this using the even term of 
the solution as an example. 

Let us separate the functions Xk(a)and Y,(a) into terms regular in the upper and lower 
half-plane, denoted by the plus and minus subscript respectively 

XX (a) = xk+ (a) - xk- (a), yk (a) = Yk+ (a) - Yk- (a) (3.1) 
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We can expand (3.1) using the Hilbert transformation formulas /6/. Thus e.g. we have 

+c= X.(B)dB 
X,+(c)=& \ * 

-m 

and Xk- (a) = - Xk+ (-- a), since Xk (- a) = - Xk (a). 
As a result of this expansion, we can separate in (2.8) the functions regular in differ- 

ent half-planes of the complex variable a, and according to the Liouville theorem we obtain 

k Y k sin ?‘k4Xk+ (a) - i k$ A, CoS ,‘kaYk+ (a) = p (a) (3.2) 

where P(u) is a polynomial, and a prime accompanying the summation sign denotes the summation 
through unity. 

The condition at the edge (1.6) must be satisfied for the choice of the solution to be 
unique, and this implies the fulfilment of the following asymptotic estimates: 

U,, (a, a) - cc-"* (I a 1 -+ + 00); Rk, TI, - k-“‘1 (k -+ + cm) 

The above relations help us to estimate the asymptotics of the left-hand part of the equation 
(3.2), and to establish that P (a) = 0. 

It is easy to obtain the relations connecting the unknown amplitudes with the values of 
the function U2s(a,a) in the points a, (m = 1, 3, 5, . ..) . Indeed, the right-hand part of the 
expression for the function aU,,(a,a)/ay regular for Ima> 0 should have no poles at CZ= 
a,,, (m = 1, 3, 5, . ..). This yields 

U,, (a, a,,,) = - 7 sin y,,,aA, - i 
Ki chk,,a ?C ch k a 

- ir--_i 
m , Ar cm .+a 

‘lx+am w--am c ak-am 
(m = 1,3, 5, . . .) (3.3) 

k=1 

from which we obtain the following linear algebraic equations for the unknown amplitudes A, 
and Ak (k = 1, 2, 3, . ..). 

-$- [I+ exp (- W41 [X0+ 04 - A] + F [I- erp (- 2b41 Yo, (G,,) A,. + 

m 
yk sin ykaXk+ (a,,,) At - La,nysla Yma 

m 
Am --icosy,a[Y,,(o,)+~]A,= 

(3.4) 

q[l-exp(--21qxa)]Yo+(a,)+ +-[1+exp(-2Zqx~)][X0+(a,)-~] (m=l,3,5,...) 
am t- rlx 

In the same manner we obtain the linear algebraic equations for the unknown amplitudes A, and 

&. (k = 2, 2, 3, . ..) 

ix 
-t [ 2t) 

I- exp (- 21qxa)] & - 
L 

F~+ (a,) 
??I 1 - q [I + exp (- 2Wa)l GO, (am)) 4 + 

$- [l - exp (- 2hm)l[ Fo, (h) - A] + $- 11 + exp (- 21qxa)] G,, (a,) (in = 2,4, 6. . ) 

(3.5) 

The functions Fk+(a) and G k+ a regular in the upper half-plane are found using ( ) the Hilbert 
transform formulas. 

Thus the initial problem of diffraction of Kelvin waves has been reduced to that of solv- 
ing an infinite system of linear algebraic equations for the amplitudes of the waves generated 
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in the channel. The infinite system of linear equations (3.4)- (3.5) was solved using the 
numerical truncation method. To control the accuracy, the values of 1 &.I VI*, 1 Tel h+ which 
tended sufficiently rapidly to constant values were printed out. 

Fig.2 depicts the dependence of the modulus of A, on xa, and Figs.3 and 4 show the de- 
pendence of the amplitude moduli of the first three even and odd progressive waves on xa.The 
graphs show salient points, characteristic for the diffraction problems, at 

ma = nnl2 (3.6) 

In Fig.3the salient points are observed at n= 3,5,..., and in Fig.4 at n= 4,6,.... The salient 
points are caused by the rearrangement of the wave motions at the instant of emergence of a 
new progressive wave. The phenomenon is known in electrodynamics /7/ and nuclear physics /8/ 
under the name of threshold effect. In /2/ the authors show the salient points in the graphs 
of the progressive waves in a channel for the same (3.6) values of WI. 

In the present case we must, in order to satisfy the boundary conditions at the tank 
walls, take into account simultaneously the wave motions in the tank generated by the wavesof 
both symmetries present in the channel. It follows that, unlike in /2/, the even and odd 
waves are interdependent. This can easily be observed in Figs.3 and 4. Indeed, the ampli- 
tudes of the waves associated with each symmetry exhibit the characteristic local minima at 
the instant of emergence of a wave of the opposite symmetry. At the same time, the amplitude 
of the reflected Kelvin wave undergoes characteristic salient points at the instantsofemerg- 
ence of the progressive waves of either symmetry. 

In conclusion we use the region 4 (x>o, y<- a)to show the method of obtaining an ex- 
pression for the elevations from the known solution of the linear system (3.4)- (3.5). We 
denote the right-hand parts of the equations (3.4) and (3.5) by F,(a)and F,,(a)respectively. 
For U, (~,a) the following relation holds: 

($ + ya) U4 (Y, a) = $f $4 d 

Its solution, with the choice of the branch of the root y taken into account, has the form 

U, (Y, a) - u, (Y, - a) = D (a) sxp (- QY) (3.7) 

Fig.2 

a.01 

0.006 
, ? 3 

Fig.3 Fig.4 

Assuming y = -a in (3.7) and taking into account the matching conditions (1.4), we obtain 
the function D (a) in explicit form 

D (a) = IF, (a) -F, @)I exp (- iya) 

Extending now the definition of the velocity component uq (5,~) to the region x <O, y< -a in 
accordance with the formula u,(x, y) = - u,(-.x,y) and inverting the Fourier transform (2.2), 
we arrive at the integral representation of the x-component of the velocity in region 4 

UP@, y) = -&I- IF, (a)-_" WI exP I- icr - ip(y + a)] da (3.8) 

Integrating (1.12) for j = 4 andT&ing into account (3.8) , we obtain the formula for the 
elevations 
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+? Ps (a)- F,(a) 
&(r*Y)=& \ a+ iyz exp[-iuz-iiy(y + a)]du ( 

-Lx 
3.9) 

The above integral cannot be computed in explicit form, but the pole of the integrand at the 
point Q = - ilqx corresponds to a Kelvin wave propagating along the wall z= 0, y< - a in the 
negative direction of the y-axis. Calculating the residue at this point we obtain the ampli- 
tude of the Kelvin wave 

&= -_[iF,(-iilqx)-_F,(-iilqx)]exp[- lqxz-iqx(y + a)] 

Estimating now the integral (3.9) with help of the method of steepest descent, we obtain 
the following expression for the elevations in region 4 at large distances from the channel 

entry (xr> 1) : 

E4 fr, 0) - *exp[i(xr- n/4)] x xcosO[F,(-n sin0)-_F,(-xxin8)] (3.10) 

The polar coordinates r, fl with the center at the point x = 0,~ = --a were introduced accord- 
ing to the formula 5 = r sine, y+a= - rcos 8. We see from (3.10) that the elevations at in- 
finity represent divergent, damped cylindrical waves with the angular distributionof amplitude 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

I cos 8 ]F, (-x sin 8) - F, (-x sin e)] ) 

In conclusion we note that the length and time units were chosen so that a/(x%) = 1. 

The author thanks V.A. Beliakov for the discussion of the results. 
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